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Motivation

• Well-known robot safety: Collision avoidance

• Other safety constraints: Power flow limit [3], speed limit, compliance, etc.

Safety in Aerial Physical Interaction
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[Video] Failure case due to motor saturation [2][Video] Failure case due to the collision [1]
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[1] L. Yang, J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial manipulation,“ arXiv preprint arXiv:2511.02342, 2025.
[2] D. Lee, H. Seo, I. Jang, S. J. Lee and H. J. Kim, "Aerial Manipulator Pushing a Movable Structure Using a DOB-Based Robust Controller," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 723-730, April 2021
[3] E. Cuniato, N. Lawrance, M. Tognon and R. Siegwart, "Power-Based Safety Layer for Aerial Vehicles in Physical Interaction Using Lyapunov Exponents," in IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6774-6781, July 2022

• Specific safety for Aerial Physical Interaction: 
Motor saturation avoidance
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Motivation

• Safety-critical control

✓ Controller with mathematical proven safety constraints.

✓ Examples: Reachable Forward Set (RFS) [4], Control Barrier Function (CBF) [5], Model Predictive Controller (MPC) [6], etc …

✓ Our choice: Control Barrier Function 

➢ Fast computation with quadratic programming (QP)-based optimization with linear inequalities

➢ No need for explicit physical interaction model

➢ Rigorous guarantee on system safety and dynamic feasibility

Safety-“Critical” Aerial Physical Interaction
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[4] Lee, D., Seo, H., Kim, D., & Kim, H. J. (2020, May). Aerial manipulation using model predictive control for opening a hinged door. In 2020 IEEE International Conference on Robotics and Automation 
(ICRA) (pp. 1237-1242). IEEE.
[5] A. Alan, T. G. Molnar, E. Das, A. D. Ames, and G. Orosz, “Disturbance observers for robust safety-critical control with control barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 1123–1128, 2022.
[6] Jang, Inkyu, et al. "Robust and recursively feasible real-time trajectory planning in unknown environments." 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021.

[Fig] Illustration of the formal behavior of a 
system under safety-critical control framework. [5]
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Motivation

Steps Towards Safer Aerial Physical Interaction
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② Collision Avoidance
[1]: (2025, Arxiv)

DOB-based 
robust controller [2]

① Motor Saturation 
Avoidance

[6]: (2025, ICRA)

(Prerequisite)
• Time-varying disturbance attenuation
• Transient performance recovery

(Step 1)

(Step 2)

Safety-critical control 
leveraging prestabilization

ability of existing robust 
control framework

Cornerstone

Power flow, maximum 
velocity, etc.

(Ongoing & Future works …)

[1] L. Yang,  J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial manipulation,“ arXiv preprint arXiv:2511.02342, 2025.
[2] D. Lee, H. Seo, I. Jang, S. J. Lee and H. J. Kim, "Aerial Manipulator Pushing a Movable Structure Using a DOB-Based Robust Controller," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 723-730, April 2021
[6] J. Byun, Y. Kim, D. Lee and H. J. Kim, "Safety-Critical Control for Aerial Physical Interaction in Uncertain Environment," 2025 IEEE International Conference on Robotics and Automation (ICRA), Atlanta, GA, USA, 2025, pp. 7526-7532
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1st Step: Motor Saturation Avoidance

• Safety filter (Proposed) + DOB-based controller [7]

• Divide the entire control law into the outer-loop (safety filter) and inner-loop (DOB-based controller) to leverage high 

performance of the DOB-based controller

Motor Saturation-Aware Safety-Critical Controller
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[7] W. Ha and J. Back, “A disturbance observer-based robust tracking controller for uncertain robot manipulators,” International Journal of Control, Automation and Systems, vol. 16, pp. 417–425, 2018.

DOB-based 
controller [7]

Aerial Manipulator

Target pose
𝒒𝒕(𝑡)

Current pose 𝒒(𝑡) (Position + Euler angles)

Safety filter

Desired pose
𝒒𝒓(𝑡)

Motor Thrusts
𝑻 = [𝑇1;⋯ ;𝑇6]

Original desired pose 
set by an external 
trajectory planner

Actual desired pose 
tracked by the controller



Nominal CBF constraint:

0 ≤ ሶℎ𝑇,𝑖 𝒙, ሶ𝒙 + 𝛾𝑇,𝑖 𝒙 ℎ𝑇,𝑖(𝒙)

Estimations of 

𝒘(෩𝒅)-related 
terms

Positive 
parameters 

for robustness

• Safety filter (Proposed)

• Formal formulation of robust CBF-QP [5]

min
ሷ𝒒𝒓

ሷ𝒒𝒓 − ሷ𝒒𝒕
2

𝑠. 𝑡. 𝜎𝑇,1 − መ𝛽𝑇,1(𝒙) ≤ 𝓛𝒇ℎ𝑇,1 𝒙 +𝓛𝒈ℎ𝑇,1 𝒙 ሷ𝒒𝒓 +𝛾𝑇,1ℎ𝑇,1 𝒙

⋮

𝜎𝑇,6 − መ𝛽𝑇,6(𝒙) ≤ 𝓛𝒇ℎ𝑇,6 𝒙 +𝓛𝒈ℎ𝑇,6 𝒙 ሷ𝒒𝒓 +𝛾𝑇,1ℎ𝑇,6 𝒙
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1st Step: Motor Saturation Avoidance

Motor Saturation-Aware Safety-Critical Controller

IROS 2025 Workshop: Advancements in Aerial Physical Interaction Safety-Critical Aerial Physical Interaction

[5] A. Alan, T. G. Molnar, E. Das, A. D. Ames, and G. Orosz, “Disturbance observers for robust safety-critical control with control barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 1123–1128, 2022.

② Motor saturation CBFs: “𝑻 = 𝑻 𝒙 ” 

ℎ𝑇,𝑖 𝒙 =
𝑇max−𝑇min

2

2
− 𝑇𝑖(𝒙) −

𝑇max+𝑇min

2

2
, 𝑖 = 1,⋯ ,6

① Integrated system of control framework & nominal dynamics 

ሶ𝒙 = 𝒇 𝒙 + 𝒈 ሷ𝒒𝒓 +𝒘(෩𝒅)

• 𝒙 ∈ ℝ36: Current pose & twist / desired pose & twist / DOB variables 

• 𝒘(෩𝒅): Model uncertainty arisen by imperfect disturbance attenuation
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1st Step: Motor Saturation Avoidance

Comparative Experiments
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• What if the target pose is located in unreachable regions?

1) Pushing a static wall: Target pose beyond the wall 

[Video] Baseline 1 [Video] Proposed[Video] Baseline 2

X4 X4 X4

[6] J. Byun, Y. Kim, D. Lee and H. J. Kim, "Safety-Critical Control for Aerial Physical Interaction in Uncertain Environment," 2025 IEEE International Conference on Robotics and 
Automation (ICRA), Atlanta, GA, USA, 2025, pp. 7526-7532

Method Remarks

Baseline 1 DOB + Thrust clipping 𝑇𝑖 = min(max 𝑇𝑑,𝑖, 𝑇𝑚 , 𝑇𝑀)

Baseline 2 DOB + Thrust adjustment by CBF Control affine system with ሶ𝑻as an input

Proposed DOB + Reference adjustment by CBF Control affine system with ሷ𝒒𝒓 as an input
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1st Step: Motor Saturation Avoidance

Comparative Experiments
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• What if the target pose is not reachable?

2) Pulling a firmly attached plug: Target pose is located away from the socket in the pulling direction. 

[Video] Baseline 1 [Video] Proposed[Video] Baseline 2

X4 X4 X4

[6] J. Byun, Y. Kim, D. Lee and H. J. Kim, "Safety-Critical Control for Aerial Physical Interaction in Uncertain Environment," 2025 IEEE International Conference on Robotics and 
Automation (ICRA), Atlanta, GA, USA, 2025, pp. 7526-7532

Method Remarks

Baseline 1 DOB + Thrust clipping 𝑇𝑖 = min(max 𝑇𝑑,𝑖, 𝑇𝑚 , 𝑇𝑀)

Baseline 2 DOB + Thrust adjustment by CBF Control affine system with ሶ𝑻as an input

Proposed DOB + Reference adjustment by CBF Control affine system with ሷ𝒒𝒓 as an input
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2nd Step: Collision Avoidance

• Objective

✓ Passing through a narrow gap that can only be traversed by the thin linkages of the robot arm

✓ Still, avoiding motor saturation

Planning and Control for Collision Avoidance
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[1] L. Yang,  J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial manipulation,“ arXiv preprint arXiv:2511.02342, 2025.

[Fig] Illustration of the aerial manipulator’s 
end-effector reaching its goal position [2]

Safety-Critical 
Dual-Layer 
Controller

Aerial
Manipulator

Current 
pose 𝒒(𝑡)

Path
Planner

Motor Thrusts
𝑻 = [𝑇1;⋯ ;𝑇6]

[Fig] Controller Diagram
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2nd Step: Collision Avoidance

• Superquadrics (SQs): Reduced conservativeness

✓ Implicit equation [8]

• Advantages

▪ Compact parameterization: Low Storage requirements & Low 

computational overhead

▪ Wide shape variability: Broad range of shapes - Near-spherical to box-

like.

▪ Smooth surfaces: Continuously differentiable (𝐶¹) surfaces 

→ Ideal for gradient-based computations and optimization

Geometric Representation of Vehicle & Obstacles
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𝜖2 = 0.1

𝜖1 = 0.1

𝜖2 = 1.0

𝜖1 = 1.0 𝜖1 = 2.0 𝜖1 = 3.0

[8] A. Jaklic, A. Leonardis, and F. Solina, Segmentation and recovery of superquadrics, vol. 20. Springer Science & Business Media, 2000.

[Fig] Illustration of wide shape variability of superquadrics [8].
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2nd Step: Collision Avoidance

▪ SQs representation [1]

Whole-Body Path Planner
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[1] L. Yang,  J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial manipulation,“ arXiv preprint arXiv:2511.02342, 2025.
[9] Campolo, D., & Cardin, F. (2025). A geometric framework for quasi-static manipulation of a network of elastically connected rigid bodies. Applied Mathematical Modelling, 143, 116003.

Collision avoidance potential
+

Goal-attracting potential

[Fig] SQ representations for our hexarotor-based aerial 
manipulator with 2-link robot arm and obstacles

6 SQs: Propellers

2 SQs: Linkages 

3 SQs: Obstacles 

▪ Maximum Clearance Whole-Body Path Planner [2]

1) Voronoi Diagram based on obstacle SQs

2) Generate path on equilibrium manifold [9] 

→ Potential function-based method attracting pose of the end-effector



1) Outer-Loop Controller (Robust CBF-QP)

▪ Constraint 1: Motor saturation-aware CBF [6]
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2nd Step: Collision Avoidance

Safety-Critical Dual-Layer Control Architecture
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[1] L. Yang,  J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial manipulation,“ arXiv preprint arXiv:2511.02342, 2025.
[2] D. Lee, H. Seo, I. Jang, S. J. Lee and H. J. Kim, "Aerial Manipulator Pushing a Movable Structure Using a DOB-Based Robust Controller," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 723-730, April 2021
[6] J. Byun, Y. Kim, D. Lee and H. J. Kim, "Safety-Critical Control for Aerial Physical Interaction in Uncertain Environment," 2025 IEEE International Conference on Robotics and Automation (ICRA), Atlanta, GA, USA, 2025, pp. 7526-7532
[10] Yang, L., Turlapati, S. H., Lv, C., & Campolo, D. (2025). Planning for quasi-static manipulation tasks via an intrinsic haptic metric: a book insertion case study. IEEE Robotics and Automation Letters

Outer-Loop Controller Inner-Loop Controller

Safety-Critical Dual-Layer Controller



1) Outer-Loop Controller (Robust CBF-QP)

▪ Constraint 1: Motor saturation-aware CBF [6]

▪ Constraint 2: SQ Distance-based CBF [1]

→ ℎ𝑐𝑜 = l𝑜𝑔 𝐹 𝒑𝒐𝒃𝒔,𝒂𝒎

→ ሷℎ𝑐𝑜 +𝛾𝑐𝑜 ሶℎ𝑐𝑜 +𝛾𝑐𝑜
2 ℎ𝑐𝑜 ≥ − መ𝛽𝑐𝑜 +𝜎𝑐𝑜 → Instantly avoid collision upon path following error.
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2nd Step: Collision Avoidance

Safety-Critical Dual-Layer Control Architecture
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[Fig] Illustration of the proxies and 
distance between them [10]

Obstacle SQ

AM SQ

𝒑𝒐𝒃𝒔,𝒂𝒎

Proxies 
between two 

SQs [10]

Why? 𝐹 ⋅ rapidly increases as the distance becomes larger.

Outer-Loop Controller Inner-Loop Controller

Safety-Critical Dual-Layer Controller

[1] L. Yang,  J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial manipulation,“ arXiv preprint arXiv:2511.02342, 2025.
[2] D. Lee, H. Seo, I. Jang, S. J. Lee and H. J. Kim, "Aerial Manipulator Pushing a Movable Structure Using a DOB-Based Robust Controller," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 723-730, April 2021
[6] J. Byun, Y. Kim, D. Lee and H. J. Kim, "Safety-Critical Control for Aerial Physical Interaction in Uncertain Environment," 2025 IEEE International Conference on Robotics and Automation (ICRA), Atlanta, GA, USA, 2025, pp. 7526-7532
[10] Yang, L., Turlapati, S. H., Lv, C., & Campolo, D. (2025). Planning for quasi-static manipulation tasks via an intrinsic haptic metric: a book insertion case study. IEEE Robotics and Automation Letters



1) Outer-Loop Controller (Robust CBF-QP)

▪ Constraint 1: Motor saturation-aware CBF [6]

▪ Constraint 2: SQ Distance-based CBF [1]

→ ℎ𝑐𝑜 = l𝑜𝑔 𝐹 𝒑𝒐𝒃𝒔,𝒂𝒎

→ ሷℎ𝑐𝑜 +𝛾𝑐𝑜 ሶℎ𝑐𝑜 +𝛾𝑐𝑜
2 ℎ𝑐𝑜 ≥ − መ𝛽𝑐𝑜 +𝜎𝑐𝑜 → Instantly avoid collision upon path following error.

2) Inner-Loop Controller: DOB-based controller [2]
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2nd Step: Collision Avoidance

Safety-Critical Dual-Layer Control Architecture
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[Fig] Illustration of the proxies and 
distance between them [10]

Obstacle SQ

AM SQ

𝒑𝒐𝒃𝒔,𝒂𝒎

Proxies 
between two 

SQs [10]

Why? 𝐹 ⋅ rapidly increases after 1.

Outer-Loop Controller Inner-Loop Controller

Safety-Critical Dual-Layer Controller

[1] L. Yang,  J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial manipulation,“ arXiv preprint arXiv:2511.02342, 2025.
[2] D. Lee, H. Seo, I. Jang, S. J. Lee and H. J. Kim, "Aerial Manipulator Pushing a Movable Structure Using a DOB-Based Robust Controller," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 723-730, April 2021
[6] J. Byun, Y. Kim, D. Lee and H. J. Kim, "Safety-Critical Control for Aerial Physical Interaction in Uncertain Environment," 2025 IEEE International Conference on Robotics and Automation (ICRA), Atlanta, GA, USA, 2025, pp. 7526-7532
[10] Yang, L., Turlapati, S. H., Lv, C., & Campolo, D. (2025). Planning for quasi-static manipulation tasks via an intrinsic haptic metric: a book insertion case study. IEEE Robotics and Automation Letters
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2nd Step: Collision Avoidance

• Picking a target object [1]

Path Planning Results in Simulation
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[1] L. Yang,  J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial manipulation,“ arXiv preprint arXiv:2511.02342, 2025.

[Fig] Environment with a narrow gap [Fig] Environment with different 
obstacle shapes

[Fig] Comparative simulations



16

2nd Step: Collision Avoidance

• Picking a target object [1]

Experimental Result
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[Video] Side view video
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𝑥
[𝑚
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𝑦 [𝑚]

Target

𝒪1

𝒪2

𝒪3

[2X]

[Video] Front view video [Video] Top view animation

[2X] [2X]
Obstacle 1 (𝒪1)

Obstacle 2 (𝒪2)

Obstacle 3 (𝒪3)

𝒪1

𝒪2

𝒪3
Target

Target

[1] L. Yang,  J. Lee, D. Campolo, H. J. Kim, and J. Byun, “Whole-body motion planning and safety-critical control for aerial 
manipulation,“ arXiv preprint arXiv:2511.02342, 2025.

[Fig] History of collision-avoidance 
CBF with its minimum value of 0.115



Conclusion

Collaboration with NTU Laboratory for Autonomous Robotics Research
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Takeaways

• Can achieve strict enforcement of safety constraints through a CBF-based formulation built on the existing control law.

• Can realize effective collision avoidance in cluttered environments by combining superquadrics geometric representations.

• Further explore stronger mathematical guarantees on safety.

• Find sweet spot between stability and safety. 

• Implement and compare existing safety-critical controllers to aerial physical interaction.

Future Directions



E-mail: quswjdgus97@snu.ac.kr

LinkedIn: 

Thank you
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